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Abstract
The atomic scale structure of network glass forming systems with the AX2

stoichiometry is considered and particular attention is paid to the systems
GeSe2, ZnCl2 and GeO2 for which the partial-pair correlation functions
have been measured by using the method of isotopic substitution in neutron
diffraction. The basic structural motif in all of these systems is the A(X1/2)4

tetrahedron, although homopolar bonds are also a significant feature in the case
of liquid and glassy GeSe2. The structural motifs link to form a network in
which ordering occurs on two different length scales at distances greater than the
nearest-neighbour. One of these length scales is associated with an intermediate
range and manifests itself by the appearance of a so-called first sharp diffraction
peak in the measured diffraction patterns at a scattering vector kFSDP where
kFSDPrAX � 2.5 and rAX is the nearest-neighbour distance for unlike chemical
species. The other is associated with an extended range, which has a periodicity
given by � 2π/kPP, where kPP denotes the scattering vector of the principal
peak and kPPrAX � 4.8. The nature and interplay between the ordering on the
intermediate and extended length scales is characterized and discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The existence and nature of structure in homogeneous network glass forming systems at
distances much greater than the nearest-neighbour has long been a subject of both interest
and controversy [1–3]. The object of this paper is to summarize and discuss recent progress
on this problem that has been made by applying the method of isotopic substitution in neutron
diffraction to measure the full set of partial-pair correlation functions [4]. The focus of attention
will be on systems with the AX2 stoichiometry which are at the heart of many materials of
scientific and technological importance [5], where A denotes an electropositive species such as
Zn, Ge or Si and X denotes an electronegative species such as Cl, Se or O. It is found that the
basic structural motifs, which are usually A(X1/2)4 tetrahedra, link to form a network in which
two characteristic length scales appear at distances greater than the nearest-neighbour [6]. The
first length scale is associated with intermediate range order and manifests itself in the measured
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diffraction patterns by a so-called first sharp diffraction peak (FSDP) at a scattering vector
kFSDP � 1–1.5 Å

−1
[7–9]. The second length scale is associated with the so-called principal

peak at kPP � 2.0–2.7 Å
−1

and appears as oscillations of periodicity given by � 2π/kPP which
extend to distances well beyond the domain of the FSDP as estimated from the coherence length
2π/�kFSDP where �kFSDP is the full-width at half-maximum [9]. The nature of the network
can be changed substantially by altering the type and connectivity of the basic structural motifs
via a change in the atomic constituents or adjustment of the temperature and pressure. The
structure can also be changed by, for example, illumination of a chalcogenide glass with light
of band-gap energy or below [10].

The neutron diffraction results will be discussed by reference to the so-called Faber–
Ziman-pair correlation functions [11], which describe the relative distribution of the atomic
species, and also by reference to the so-called Bhatia–Thornton-pair correlation functions [12],
which separate the contributions to a measured diffraction pattern from the topological and
chemical ordering. Progress has been made possible by the development of improved neutron
diffraction instrumentation, particularly the D4C diffractometer at the Institut Laue-Langevin
(ILL) in Grenoble [13].

2. Theory

In a neutron diffraction experiment on a liquid or glassy AX2 system, the coherent scattered
intensity can be represented by the total structure factor [14]

F(k) = c2
Ab2

A[SAA(k) − 1] + 2cAcXbAbX[SAX(k) − 1] + c2
Xb2

X[SXX(k) − 1] (1)

where Sαβ(k) represents a Faber–Ziman [11] partial structure factor and cα, bα denote the
atomic fraction and bound coherent scattering length of chemical species α, respectively. These
partial structure factors are related to the partial-pair distribution functions, gαβ(r), through the
Fourier transform relation

gαβ(r) = 1 + 1

2π2n0r

∫ ∞

0
dk k[Sαβ(k) − 1] sin(kr), (2)

where n0 is the atomic number density of the system, and the mean number of particles of
type β contained in a volume defined by two concentric spheres of radii ri and r j , centred on a
particle of type α, is given by

n̄β
α = 4πn0cβ

∫ r j

ri

dr r 2gαβ(r). (3)

The full set of Sαβ(k) for an AX2 system can be extracted from the measured diffraction patterns
by applying the method of isotopic substitution in neutron diffraction, provided that isotopes
with a sufficient neutron scattering length contrast are available [4, 14].

The total structure factor of equation (1) can also be written in terms of the Bhatia–
Thornton [12] number–number, concentration–concentration and number–concentration partial
structure factors, denoted by SNN(k), SCC(k) and SNC(k) respectively, where

F(k) = 〈b〉2[SNN(k) − 1] + cAcX(bA − bX)2[{SCC(k)/cAcX} − 1]
+ 2〈b〉(bA − bX)SNC(k) (4)

and 〈b〉 = cAbA + cXbX is the average scattering length. The relationship between the two sets
of partial structure factors is given by

SNN(k) = c2
ASAA(k) + c2

XSXX(k) + 2cAcXSAX(k)

SCC(k) = cAcX[1 + cAcX(SAA(k) + SXX(k) − 2SAX(k))]
SNC(k) = cAcX[cA(SAA(k) − SAX(k)) − cX(SXX(k) − SAX(k))].

(5)
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If bA = bX the incident neutrons in a diffraction experiment cannot distinguish between the
different scattering nuclei and the measured total structure factor gives SNN(k) directly (see
equation (4)). The Fourier transform of SNN(k), the partial-pair distribution function gNN(r),
therefore describes the sites of the scattering nuclei and since it cannot distinguish between
the chemical species that decorate those sites it gives information on the topological ordering.
If 〈b〉 = 0, however, the measured total structure factor gives SCC(k) directly and its Fourier
transform, gCC(r), describes the chemical ordering of the A and X atomic species. The partial-
pair distribution function gCC(r) will show a positive or negative peak at a given distance when
there is a preference for like or unlike neighbours respectively (see equation (7)). The Fourier
transform of SNC(k), namely the pair-distribution function gNC(r), describes the correlation
between the sites described by gNN(r) and their occupancy by a given chemical species. The
relationship between the gαβ(r) (α, β = A, X) and gI J (r) (I, J = N, C) is given by

gNN(r) = c2
AgAA(r) + c2

XgXX(r) + 2cAcXgAX(r) (6)

gCC(r) = cAcX[gAA(r) + gXX(r) − 2gAX(r)] (7)

gNC(r) = cA[gAA(r) − gAX(r)] − cX[gXX(r) − gAX(r)]. (8)

3. Results

3.1. Structural signatures for glass formation in liquid AX2 systems

The measured Bhatia–Thornton partial structure factors for the molten salts BaCl2 [15],
SrCl2 [16], CaCl2 [17], MgCl2 [18], NiCl2 [19] and ZnCl2 [20], which have a range of cation
to anion radius ratios [21], are shown in figure 1. Zinc dichloride is the only one of these
systems which readily forms a glass and the measured SI J (k) are substantially different to those
observed for the other molten AX2 systems [22]. For example, in the case of ZnCl2 the partial
structure factor SNN(k) develops a characteristic ‘three-peak’ structure in which there is a well-
defined FSDP at kFSDP � 1.03 Å

−1
. This feature is the signature of a new level of structural

complexity on an intermediate length scale which has a periodicity given by 2π/kFSDP and a
coherence length given by 2π/�kFSDP [9]. Indeed, all three SI J (k) for molten ZnCl2 display
an FSDP, which occurs at an approximately common value of kFSDP, and all three SI J (k) also
show a well-defined principal peak at a scattering vector kPP which takes a common value of
� 2.1 Å

−1
.

By contrast, none of the SI J (k) for the other liquids shown in figure 1 has a well-defined
FSDP and the principal peaks often occur at different values of k. For instance, in the case of
SrCl2 the principal peak in SCC(k) occurs at 1.61 Å

−1
while the principal peak in SNN(k) occurs

at 2.31 Å
−1

. In consequence, it is possible to assign the first and second peaks in the measured
total structure factor for this system with the first peaks in SCC(k) and SNN(k) respectively,
i.e. the first and second peaks in F(k) can be correctly associated with the chemical and
topological ordering [23]. As already discussed, this situation does not hold for ZnCl2 since
the principal peaks in all three SI J (k) occur at a common position.

The measured Bhatia–Thornton SI J (k) for liquid GeSe2 [24, 25], glassy GeSe2 [26, 27],
glassy ZnCl2 [6] and glassy GeO2 [28, 29] are shown in figure 2. We find that the general
features observed in the measured SI J (k) for liquid ZnCl2 are also seen in the partial structure
factors for liquid GeSe2, which likewise forms a glass by bulk quenching methods. Moreover,
the generic features in the SI J (k) for liquid ZnCl2 and GeSe2 carry over to the corresponding
glass while there is a concomitant increase in the relative sharpness of the peaks. The
corresponding Faber–Ziman partial structure factors, Sαβ(k), are presented in figure 3. They
show that the FSDP in all three systems arises predominantly from A–A correlations and that, in

3



J. Phys.: Condens. Matter 19 (2007) 455208 P S Salmon

-0.5

0

0.5

1

1.5

-0.5

0

0.5

1

0 2 4 2 46 8

Scattering vector k (Å
-1

)

-0.5

0

0.5

1

Pa
rt

ia
l s

tr
uc

tu
re

 f
ac

to
r 

S IJ
(k

)

BaCl
2

MgCl
2

SrCl
2

NiCl
2

CaCl
2

ZnCl
2

0 6 8 10

Figure 1. The measured Bhatia–Thornton partial structure factors, SI J (k), for molten AX2 systems
with varying cation to anion radius ratios (adapted from [22]). For each panel, the upper curve
gives SNN(k), the middle (red) curve gives SCC(k) and the lower (blue) broken curve gives SNC(k).
On the absolute temperature scale, the ratio of the liquid to melting point temperatures, T/Tmp, is
1.051 (BaCl2), 1.045 (SrCl2), 1.045 (CaCl2), 1.017 (MgCl2), 1.013 (NiCl2) and 1.015 (ZnCl2). The
cation radii are 1.35 Å (Ba2+), 1.18 Å (Sr2+), 1.00 Å (Ca2+), 0.72 Å (Mg2+), 0.69 Å (Ni2+) and
0.74 Å (Zn2+) and the radius of Cl− is 1.81 Å [21]. Only the ZnCl2 system readily forms a glass.

Table 1. The mean position of the FSDP, kFSDP, and the principal peak, kPP, for a variety of network
glass forming AX2 systems as scaled by the nearest-neighbour distance for unlike chemical species
rAX. The prefixes l and g denote the liquid and glass respectively.

System rAX (Å) kFSDP (Å−1) kFSDPrAX kPP (Å−1) kPPrAX Reference

l-GeSe2 2.42(2) 0.98(2) 2.37 2.00(2) 4.84 [25, 27]
g-GeSe2 2.36(2) 1.00(2) 2.36 2.05(3) 4.84 [26, 27]
l-ZnCl2 2.29(2) 1.03(2) 2.36 2.12(3) 4.85 [20]
g-ZnCl2 2.28(1) 1.09(3) 2.49 2.10(1) 4.79 [6]
g-GeO2 1.73(1) 1.53(2) 2.65 2.66(1) 4.60 [28, 29]
g-SiO2 1.60(1) 1.50(1) 2.40 2.93(1) 4.69 [28, 29]

the case of glassy GeO2, there is also a notable contribution from A–X and X–X correlations.
Similar observations hold for all the other systems in figure 1 that show a peak in SI J (k) at
k � 1 Å

−1
[22]. The development of an intermediate length scale is therefore related to the

relative distribution of structural motifs associated with the A atoms. The mean FSDP and
principal peak positions for several network glass forming AX2 systems are shown in table 1.
When scaled by rAX, the nearest-neighbour distance for unlike chemical species, it is found
that kFSDPrAX � 2.5 (see [30] for further discussion) and kPPrAX � 4.8.
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Figure 2. The measured Bhatia–Thornton partial structure factors, SI J (k), for liquid GeSe2 [25],
glassy GeSe2 [26, 27], glassy ZnCl2 [6] and glassy GeO2 [28, 29]. For each panel, the upper
curve gives SNN(k), the middle (red) curve gives SCC(k) and the lower (blue) broken curve gives
SNC(k). The statistical uncertainties are represented by the scatter in the data points. On the absolute
temperature scale, the ratio of the liquid to melting point temperatures, T/Tmp, is 1.041 for GeSe2.
The diffraction measurements for the glasses were all made at ≈25 ◦C.

3.2. Structure of network glass forming AX2 systems

The measured partial-pair distribution functions gαβ(r) for liquid and glassy GeSe2, glassy
ZnCl2 and glassy GeO2 are illustrated in figure 4 and several of the parameters describing
the local structure are listed in table 2. The atomic number density for these systems
is 0.0311(2) Å

−3
[24], 0.0334(1) Å

−3
[26], 0.0359(1) Å

−3
[6] and 0.0629(3) Å

−3
[28]

respectively. In table 2, the A–X̂–A bond angle, θAXA, was calculated from the quoted A–
X and A–A distances, rAX and rAA, by using cos(θAXA) = 1 − r 2

AA/2r 2
AX. For each system,

the coordination number for unlike chemical species n̄X
A and the distance ratio rAA/rAX are

consistent with the appearance of A(X1/2)4 tetrahedra as the predominant structural motifs.
The distance ratio rAA/rAX for perfect tetrahedra is

√
8/3 = 1.633 which suggests that the
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Figure 3. The measured Faber–Ziman partial structure factors, Sαβ(k), for liquid GeSe2 [25], glassy
GeSe2 [26, 27], glassy ZnCl2 [6] and glassy GeO2 [28, 29]. For each panel, the upper (red) curve
gives SAA(k), the middle (black) curve gives SXX(k), and the lower (blue) curve gives SAX(k). The
statistical uncertainties are represented by the scatter in the data points.

tetrahedra in liquid GeSe2 are relatively distorted. The first peak in gAX(r) for glassy GeO2

is very sharp by comparison with the other materials and coincides with higher vibrational
frequencies [31–33]. It yields a coordination number n̄O

Ge that is systematically less than four
owing to the finite k-space resolution function of the diffractometer for which a correction was
not made [34, 35].

In the case of GeSe2, homopolar Ge–Ge and Se–Se bonds are observed at 2.33(3)
and 2.30(2) Å for the liquid and at 2.42(2) and 2.32(2) Å for the glass and correspond to
coordination numbers of n̄Ge

Ge = 0.25(10), n̄Se
Se = 0.23(5) and n̄Ge

Ge = 0.25(5), n̄Se
Se = 0.20(5)

respectively [27]. The nearest-neighbour coordination number for unlike chemical species,
n̄Se

Ge, is 3.5(2) for the liquid and 3.7(1) for the glass (see table 2). Hence the overall Ge and
Se coordination numbers n̄Ge = n̄Ge

Ge + n̄Se
Ge and n̄Se = n̄Se

Se + n̄Ge
Se are 3.8(2) and 2.0(1) for the

liquid together with 4.0(1) and 2.05(7) for the glass respectively, i.e. Ge and Se are, within
the experimental error, four-fold and two-fold coordinated and therefore have a full outer shell
of eight electrons. For the glass, it is also possible to discern a peak at 3.02(2) Å in gGeGe(r)

6
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Figure 4. The measured partial-pair distribution functions, gαβ(r), for liquid GeSe2 [25], glassy
GeSe2 [26, 27], glassy ZnCl2 [6] and glassy GeO2 [28, 29]. For each panel, the dark curve gives
gAX(r), the light (red) curve gives gAA(r) and the broken (blue) curve gives gXX(r). In the case of
the glassy systems, the effect in real space of truncating the diffraction pattern at a finite maximum k
value before Fourier transformation was taken into account by using the procedure described in [27].
The unphysical low-r oscillations have been suppressed for clarity of presentation.

(see figure 4), which is identified with the Ge–Ge distance within an edge-sharing tetrahedral
motif for which the Ge–Ŝe–Ge bond angle is 80(1)◦ (the mean Ge–Ŝe–Ge bond angle for other
tetrahedral configurations is 98(1)◦—see table 2.) The accompanying coordination number
n̄Ge

Ge = 0.34(5) is consistent with a ratio for the number of Ge in edge-sharing tetrahedra to the
total number of Ge in the system of 34(5)%, in agreement with several other estimates [27].
Liquid and glassy GeSe2 also contain corner-sharing Ge(Se1/2)4 tetrahedra in accordance with
the structure of the high-temperature phase of crystalline GeSe2 which has equal numbers of
edge- and corner-sharing tetrahedral motifs [36]. The ratio for the number of Ge in edge-
sharing tetrahedra to the number of Ge in corner-sharing tetrahedra, obtained from the neutron
diffraction experiments, is roughly comparable for the liquid [25] and is 83(16)% for the
glass [27].
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Table 2. Parameters obtained from the first main peaks in the measured gαβ (r) for liquid and glassy
GeSe2, glassy ZnCl2 and glassy GeO2. The coordination numbers were calculated by using a cut-
off value equal to the first minimum after a peak in gαβ(r). For liquid and glassy GeSe2, peaks also
occur in gGeGe(r) and gSeSe(r) at smaller values of r and correspond to the appearance of homopolar
bonds and edge-sharing tetrahedra. For ideal tetrahedral units rXX/rAX = √

8/3 = 1.633.

System gαβ(r) rαβ (Å) n̄β
α Range (Å) rXX/rAX A–X̂–A (deg) η′

X Reference

l-GeSe2 GeSe 2.42(2) 3.5(2) 1.8–3.1 1.550(15) 96(1) 0.670(17) [25, 27]
GeGe 3.59(2) 2.9(3) 2.6–4.2
SeSe 3.75(2) 9.6(3) 2.7–4.8

g-GeSe2 GeSe 2.36(2) 3.7(1) 2.09–2.61 1.648(16) 80(1)a, 98(1) 0.667(17) [26, 27]
GeGe 3.57(2) 3.2(3) 3.19–4.23
SeSe 3.89(2) 9.3(2) 3.09–4.39

g-ZnCl2 ZnCl 2.28(1) 3.9(1) 1.90–2.70 1.623(8) 111(1) 0.647(9) [6]
ZnZn 3.75(1) 4.0(1) 3.31–4.42
ClCl 3.70(1) 12.1(2) 3.19–4.97

g-GeO2 GeO 1.73(1) 3.8(1) 1.53–1.96 1.636(11) 132(2) 0.495(9) [28, 29]
GeGe 3.16(1) 4.1(2) 2.58–3.56
OO 2.83(1) 6.7(1) 2.58–3.13

a The Ge–Ŝe–Ge angle for edge-sharing tetrahedra as calculated by using the measured value of
rGeGe = 3.02(2) Å for this structural conformation.

By comparison to GeSe2, the structure of ZnCl2 and GeO2 is based predominantly on
corner-sharing A(X1/2)4 tetrahedra, i.e. the diffraction experiments do not show evidence for
homopolar bonds or for edge-sharing conformations (the maximum nearest neighbour A–A
distance for regular edge-sharing tetrahedra is rAA = 2 cos(θXAX/2)rAX = 1.155rAX where
θXAX = cos−1(−1/3) = 109.47◦ is the tetrahedral angle). In general, the packing fraction
of spherical X atoms of radius rX in an AX2 system is η′

X = (8/9)n0πr 3
X and for a perfect

tetrahedron of four spherical touching X atoms, rXX/rAX = √
8/3 where rXX = 2rX. Hence

the packing fraction of X atoms in tetrahedral units, expressed as a function of rAX and the
atomic number density n0, is η′

X = 16
√

2πn0r 3
AX/27

√
3 = 1.520n0r 3

AX [37]. The values of
η′

X listed in table 2 show the extent to which the network opens up as the inter-tetrahedral
bond angle A–X̂–A increases on going from glassy ZnCl2 to GeO2. It is notable that the anion
packing fraction for glassy ZnCl2 is close to the value of �0.64 found for a dense random
packing of hard spheres [38]. In the case of GeSe2, the assumption of spherical X atoms in
regular tetrahedral units leads to η′

X = 0.667(17) for the glass and η′
X = 0.6836 for the high-

temperature crystalline phase [37], which suggests a softening of the spheres and deformation
of the tetrahedra. Nevertheless, it is possible to calculate a reduced packing fraction for hard
sphere X atoms in glassy GeSe2 by considering the homopolar bonding motifs. For example,
if only dimers are formed it follows that the ratio for the maximum fraction of Se involved in
homopolar bonds to the total number of Se atoms in the system is given by 20(5)% [27] and
the measured distance for Se–Se homopolar bonds gives a radius rSe = 1.16 Å. The packing
fraction of Se atoms, assuming 20% Se in dimers and 80% Se in Ge(Se1/2)4 tetrahedra, is then
given by η′

X = 0.2(8n0πr 3
Se/9) + 0.8(1.520n0r 3

GeSe) = 0.56 where rGeSe = 2.36 Å.

4. Discussion

4.1. Intermediate range order and the first sharp diffraction peak

As already discussed, the FSDP is regarded as a signature of ordering on an intermediate length
scale and, as befits the appearance of a sharp peak in reciprocal space, the periodicity of this

8
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Figure 5. The measured partial structure factor SGeGe(k) for liquid GeSe2 at 784 ◦C [25] and glassy
GeSe2 at 26 ◦C [26, 27]. For each panel, the broken (blue) curve joins the data points, the solid
(black) curve gives a spline fit to the data, and the broken (red) curve gives the FSDP as obtained
by reflecting the low-k part of the first peak about its maximum at kFSDP.

ordering is given by 2π/kFSDP and the coherence length is given by 2π/�kFSDP where �kFSDP

is the full-width at half-maximum [9]. It is, however, very difficult to discern this ordering in the
corresponding partial-pair distribution functions. As an illustration, we therefore consider the
case of liquid and glassy GeSe2 where the FSDP in SGeGe(k) is a particularly prominent feature
(see figure 3). The contribution of the FSDP to the ordering in r -space is estimated by reflecting
the low-k portion of the first peak about kFSDP in order to separate it from the other features in
SGeGe(k) (see figure 5). The FSDP thus obtained is then Fourier transformed to compare with
the full gGeGe(r) function as shown in figure 6. Finally, the Fourier transform of the FSDP is
subtracted from gGeGe(r) to give g̃GeGe(r) and the result is also presented in figure 6 in terms
of the function r g̃GeGe(r) which emphasizes the nature of the ordering at large r -values [39].
In the case of liquid GeSe2, two curves are shown for gGeGe(r), corresponding to an analysis
of the data where Ge–Ge homopolar bonds were either allowed or excluded (see [25] and the
discussion in [40, 41]). The results show that the Fourier transform of the FSDP in SGeGe(k)

does account for discernable real space features in gGeGe(r). In the case of the glass, when the
underlying modulation due to the FSDP is subtracted the resultant function r g̃GeGe(r) shows
oscillations about zero which persist to large distances. The character of this extended range
ordering in network glass forming systems, which is not associated with the FSDP, will now be
considered in greater detail.

4.2. Ordering on an extended length scale in AX2 glasses

For several reasons the extended range ordering in AX2 glasses is most conveniently considered
in terms of the Bhatia–Thornton partial-pair distribution functions. Firstly, the Bhatia–Thornton
partial structure factors for the measured systems are usually better conditioned than the
corresponding Faber–Ziman partial structure factors and are therefore less prone to systematic
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Figure 6. The measured partial-pair distribution function gGeGe(r) for (a) liquid and (b) glassy
GeSe2 as obtained from the partial structure factors shown in figure 5. Two curves are given for the
liquid and correspond to an analysis of the data in which homopolar bonds were either allowed (full
curve) or excluded (broken (blue) curve)—see the text for further details. Each gGeGe(r) function
is compared with the Fourier transform (chained curve) of the FSDP in SGeGe(k) which is shown
by the broken (red) curve in figure 5. The insets show the function rg̃GeGe(r) which illustrates
the effect of subtracting the Fourier transform of the FSDP from the measured Ge–Ge partial-pair
distribution function.

error [34]. Secondly, the Bhatia–Thornton formalism focuses on the number density and
concentration fluctuations and thereby allows for a separation of the contributions to the
structure from the topological and chemical ordering [22]. Thirdly, the low-k limits of the
partial structure factors and the moments of the partial-pair correlation functions can be readily
linked to the thermodynamic and other properties of a system [12, 34, 42]. Lastly, an analysis
of the large-r behaviour of the Bhatia–Thornton-pair correlation functions for simple model
pair potentials leads to simple analytical expressions for their ultimate decay [34].

Consider, for example, a rigid-ion potential which represents one of the simplest simulation
models for ionic systems [43–45]. Let the chemical species A and X have positive and negative
charges of ZAe and ZXe respectively, where e is the elementary charge, and let the interaction
between any two particles labelled by i and j separated by a distance r be represented by a pair
potential which contains a short-ranged repulsive term φsr

i j(r), a Coulomb term φCoul
i j (r) ∝ r−1,

and a dispersion term φ
disp
i j (r) ∝ r−6 such that

φi j(r) = φsr
i j(r) + Zi Z j e2

ε r
− Ai j

r 6
(9)

where ε ≡ 4πεrε0, εr is the dimensionless relative dielectric constant of the medium in which
the ions are immersed and ε0 is the vacuum permittivity. The dispersion term results from
induced dipole–induced dipole interactions and Ai j is a parameter (� 0) which depends on the
polarizability of the ions [46].

For the rigid-ion model, a simple power-law dependence for the ultimate decay of the pair
correlation functions is expected where rhNN(r) → r−5, rhNC(r) → r−7, rhCC(r) → r−9

10
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Table 3. Parameters obtained by fitting the measured Bhatia–Thornton-pair correlation functions
rh I J (r) for glassy GeSe2, ZnCl2 and GeO2 by using equations (10)–(12).

System I J a0 (Å
−1

) aa
0 (Å

−1
) a1 (Å

−1
) kPP (Å

−1
) Ab

I J (Å) θI J (rad) R2 Range (Å)

g-GeSe2 NN 0.24(2) 0.29(5) 2.10(2) 2.04(1) 3(1) −2.6(4) 0.95 15.6–21.0
CC 0.180(4) 0.185(9) 2.093(4) 2.09(1) 4.0(2) −1.68(4) 0.98 7.6–19.4
NC 0.158(9) 0.21(3) 2.104(8) 2.05(1) 3.1(4) −5.3(1) 0.96 10.8–19.8

g-ZnCl2 NN 0.17(1) 0.20(2) 2.11(1) 2.09(1) 1.1(2) −1.8(2) 0.91 15.2–25.6
CC 0.225(5) 0.204(7) 2.133(5) 2.10(1) 8.5(4) −1.89(5) 0.97 7.7–26.9
NC 0.183(4) 0.184(7) 2.119(3) 2.10(1) 5.4(3) 1.34(5) 0.98 10.5–25.5

g-GeO2 NN 0.33(3) 0.26(4) 2.78(3) 2.67(1) 2.1(8) 2.8(4) 0.86 12.3–19.9
CC 0.24(1) 0.25(2) 2.62(1) 2.65(1) 6.3(5) −1.26(7) 0.94 4.7–15.4
NC 0.250(5) 0.26(1) 2.654(5) 2.66(1) 4.7(2) 1.66(5) 0.99 7.1–16.6

a From a straight line fit to the maxima in ln |rh I J (r)| versus r .
b ANN ≡ 2|ANN|, ACC ≡ 2cAcX|ACC| and ANC ≡ 2|ANC|.

and hNN(r) ≡ gNN(r) − 1, hNC(r) ≡ gNC(r), hCC(r) ≡ gCC(r) [34, 47]. However, if the
dispersion terms are absent in equation (9) then a pole analysis of the k-space solutions to the
Ornstein–Zernike equations, following the method of Evans and co-workers [48, 49], leads to
the following expressions for the asymptotic decay of the pair correlation functions when the
system density is high [34]:-

rhNN(r) → 2|ANN| exp(−a0r) cos(a1r − θNN) (10)

rhCC(r) → 2cAcX|ACC| exp(−a0r) cos(a1r − θCC) (11)

rhNC(r) → 2|ANC| exp(−a0r) cos(a1r − θNC). (12)

In this case, the correlations have an exponentially damped oscillatory decay with a common
decay length given by a−1

0 and a common wavelength for the oscillations given by 2π/a1. The
AI J are complex numbers with amplitudes related by |ANN||ACC| = |ANC|2 and phases related
by θNN + θCC = 2θNC. Equations (10)–(12) also hold for a hard sphere system when both the
Coulomb and dispersion terms are absent in equation (9).

For the rigid-ion model, a power-law decay might be difficult to observe owing to the
relative weakness of the dispersion forces. However, the presence of these forces means
that equations (10)–(12) will not necessarily hold since they were derived for the case when
dispersion forces are absent. Furthermore, the presence of three- or higher-body interactions
for glass forming AX2 systems also provides complications since the theory is based on
pair potentials. However, provided the large-r interactions can be described by effective
pair potentials that lead to simple poles [34], it is feasible that the theory which leads to
equations (10)–(12) will remain valid. Notwithstanding, these equations provide a benchmark
for analysing the large r -dependence of the Bhatia–Thornton-pair distribution functions and for
understanding the origin of ordering on an extended range in more complicated systems that
involve three-body potentials.

The ordering on an extended length scale in AX2 network glasses is conveniently
illustrated by reference to the results obtained for glassy ZnCl2 [6], especially as this system
is expected to fall within the framework of an ionic interaction model provided that ion
polarization effects are taken into account [44]. The hI J (r) functions for this material were
obtained by spline fitting and Fourier transforming the SI J (k) after (i) the low-k data points
(k � 0.40 Å

−1
) were extrapolated to k = 0 by plotting either [SNN(k)−1], [SCC(k)/cZncCl−1] or

SNC(k)/cZncCl versus k2 and fitting a straight line at small-k [42] and (ii) a Lorch modification
function was applied [50]. The resultant functions, plotted as ln |rh I J (r)| versus r in figure 7,
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Figure 7. Decay of the Bhatia–Thornton partial-pair distribution functions for glassy ZnCl2 as
shown by plotting ln |rh I J (r)| versus r (solid (blue) curves) in column (a) and rh I J (r) versus r
(solid (blue) curves) in column (b). For column (a), the inverse decay length a0 was obtained from

the fitted straight lines given by the broken (red) curves and it takes a value of 0.20(2) Å
−1

(fit range

15.8–24.8 Å, R2 = 0.97), 0.184(7) Å
−1

(fit range 11.3–24.7 Å, R2 = 0.99) and 0.204(7) Å
−1

(fit
range 8.1–26.3 Å, R2 = 0.99) for the N–N, N–C and C–C functions respectively. For column (b),
the broken (red) curves show the fits to the rh I J (r) functions at large r-values (see [34] for further
details).

show that the N–N correlations have a greater complexity than the N–C and C–C correlations
and decay more rapidly at smaller-r values. All of the functions show ordering at large-r values
which persists to distances far exceeding the coherence length 2π/�kFSDP � 12.6 Å estimated
from the width of the FSDP in SNN(k). The inverse decay length a0 was estimated by fitting the
repeated maxima at large-r in figure 7, which are least sensitive to the details of any smoothing
procedure, to the straight line

ln |rh I J (r)| = −a0r + constant. (13)

The rh I J (r) functions were also fitted by using equations (10)–(12) (see figure 7) and the fitted
parameters, the range used for the fits and the R2 goodness-of-fit parameter are summarized
in table 3. The a0 values thus deduced represent upper limits owing to the k-space resolution
function of the diffractometer [34]. The results show that the extended range oscillations for
glassy ZnCl2 decay exponentially with a common inverse decay length a0 � 0.19 Å

−1
and

a periodicity that is determined not by the position of the FSDP but by the position of the
principal peak i.e. the wavelength of the oscillations 2π/a1 � 2π/kPP. Indeed, equations (11)
and (12) provide a robust account of the measured rhCC(r) and rhNC(r) functions to distances
as short as � 5 Å. The relationship between the amplitudes predicted by the simple theory does
not, however, appear to hold. Similar conclusions are drawn from an analysis of the measured
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rh I J (r) functions for glassy GeSe2 and GeO2, as indicated by the parameters summarized in
table 3 [29, 34].

It is notable that exponentially damped oscillatory rh I J (r) functions for network glasses
will not be reproduced by models based on crystalline systems since the ordering in rh I J (r)

will persist to arbitrarily large distances [51], even when a large positional disorder is applied
to the atomic coordinates [52, 53].

4.3. Ordering on intermediate versus extended length scales with increasing glass fragility

It is found that the measured Bhatia–Thornton partial structure factors, SI J (k), for glassy GeSe2

are comparable to the corresponding SI J (k) for glassy ZnCl2 when these functions are plotted
in terms of the scaled scattering vector krAX (see figure 2 of [6]). A similar observation
holds when the N–C and C–C partial structure factors for these systems are compared to
those measured for glassy GeO2, although the N–N partial structure factor for glassy GeO2

is markedly different in having a much larger FSDP and smaller principal peak (see figure 1
of [28]). It is therefore plausible that there is a correlation between the relative importance of
the ordering on the intermediate and extended length scales (as manifested by the features in
the N–N partial structure factor) and the packing of the basic structural motifs (as represented
by parameters such as the A–X̂–A bond angle and anion packing fraction η′

X which are given in
table 2). On the fragility scale, GeO2 is like silica (SiO2) in being an archetypal ‘strong’ glass
forming material, a taxonomy which stems originally from the temperature dependence of the
liquid viscosity [54]. By comparison, GeSe2 and ZnCl2 are more intermediate in character
between the ‘strong’ and ‘fragile’ extremes [54, 55]. Thus it is the relative importance of
the FSDP and principal peak in SNN(k) that most readily enables a distinction to be made
between the diffraction patterns measured for the ‘strong’ glass former GeO2 and the more
‘intermediate’ glass formers GeSe2 and ZnCl2.

The generality of this observation can be tested by investigating the density dependence of
the structure of liquid and glassy GeSe2 by using x-ray and neutron diffraction methods since
the fragility of a liquid or glass is expected to increase with density [56–58] and the measured
total structure factor for GeSe2 usually gives an excellent representation of SNN(k) [39, 59].
This follows because in a neutron diffraction experiment on GeSe2 containing elements of
natural isotopic abundance bGe ≈ bSe in equation (4) so that F(k) � 〈b〉2[SNN(k) − 1].
In a conventional x-ray diffraction experiment, SNN(k) is again obtained directly from the
measured diffraction pattern since the atomic form factors of Ge and Se, which replace the
coherent neutron scattering lengths for Ge and Se in equation (4), are also comparable. When
the pressure on glassy GeSe2 is increased from ambient to 9.3 GPa, it is found that the FSDP
in SNN(k) vanishes and the principal peak gains in intensity [60]. Similar behaviour for SNN(k)

is observed for the liquid phase of GeSe2 as the density is increased at constant temperature by
applying a pressure between 0.5 and 4.1 GPa at 847 ◦C [61]. When the temperature of liquid
GeSe2 is increased at much lower pressures from 742–1100 ◦C, the density also increases as the
network collapses [62] and the FSDP in SNN(k) diminishes in intensity relative to the principal
peak [63].

4.4. Origin of the ordering on an extended length scale

As for the FSDP, the principal peak also appears as a sharp feature in the measured SI J (k)

for the AX2 systems shown in figure 2. It is therefore expected to give rise to oscillations in
real space with a periodicity given by 2π/kPP and a coherence length given by 2π/�kPP where
�kPP is the full-width at half-maximum. For example, a principal peak with a Lorentzian profile
will give rise to exponentially damped oscillations in real space with an inverse decay length
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given by �kPP/2 [9]. In the case of glassy ZnCl2, �kFSDP � 0.50 Å
−1

and �kPP � 0.38 Å
−1

,
which give inverse decay lengths for the intermediate and extended range oscillations of �0.25
and 0.19 Å

−1
respectively. These values are comparable to the inverse decay lengths obtained

from the data given in figure 7; a fit using equation (13) to the N–N correlations in the
intermediate range (≈5–9 Å

−1
) gives an inverse decay length of �0.26 Å

−1
while a fit to

the extended range oscillations gives a0 = 0.20(2) Å
−1

(see table 3). This accounts for an
initial decay of the correlations in ln |rhNN(r)| (see figure 7) that is more rapid than at the
largest r values. The estimated widths of the principal peaks in SCC(k) and SNC(k) (measured
relative to a peak height defined by drawing a baseline between adjacent minima) give inverse
decay lengths of 0.19 and 0.16 Å

−1
, respectively, that are also in fair accord with the a0 values

quoted in table 3. Furthermore, the wavelength 2π/kPP of the extended range oscillations is
comparable to the size of a tetrahedral A(X1/2)4 motif e.g. for the AX2 systems listed in table 1
we find that 2π/kPP ≈ 4rAX/3, which is the base to apex distance in a regular tetrahedron,
whence kPPrAX ≈ 3π/2 ≈ 4.7. Hence, the extended range oscillations observed for network
glass forming AX2 systems arise from a local ordering phenomenon which has a long coherence
length.

For dense hard sphere liquids, extended range oscillations occur in rhNN(r) and have a
periodicity that is dependent on the hard sphere diameter [65, 66]. For molten salts, extended
range oscillations occur in rhCC(r) and are attributed to a competition between packing effects
and screening which leads to charge ordering of the ions and to the appearance of a relatively
sharp principal peak in SCC(k) [67]. As shown in figure 1, however, the existence of charge
ordering alone is insufficient to produce the type of structure that is observed in network glass
forming AX2 systems. For example, the principal peaks in the SI J (k) do not generally occur at
a common position and a mere packing of charge neutral units does not lead inextricably to a
well-defined FSDP. Instead, the measured behaviour of the Bhatia–Thornton-pair distribution
functions and their moments (see figure 2 of [42] and section 2.6 of [34]) shows that the
ordering on an extended range must result from two interdependent effects.

Firstly, the oscillations in rhCC(r) show a preference for chemical ordering, i.e. a linkage
of the basic structural motifs that gives alternating A–X–A–X configurations. Secondly, this
chemical ordering is coupled with the topological ordering since rhNC(r) also shows marked
oscillations, having a common wavelength of oscillation � 2π/kPP, which extend to large
distances (see figure 7). The basic structural motifs therefore pack to give number density
fluctuations represented by rhNN(r) that occur on the same length scale as the concentration
fluctuations represented by rhCC(r). As indicated by figure 6 (b), the arrangements thus
formed also produce a modulation of the pair-distribution functions on an intermediate scale as
manifested by the appearance of an FSDP in SNN(k). The discussion of section 4.3 shows that
the FSDP increases in importance relative to the principal peak with increasing openness of
the network structure which is characterized by parameters such as the A–X̂–A bond angle and
anion packing fraction η′

X. As an additional example, the diffraction pattern for glassy SiO2

features a more prominent FSDP and weaker principal peak than for glassy GeO2 (see figure 4
in [28]) and corresponds to an A–X̂–A bond angle that is larger at 148◦ [64] and a packing
fraction of oxygen atoms that is smaller at η′

X = 0.414(8) [29].
Finally, so-called polyamorphic phase transitions are associated with an abrupt change

in the structure of a liquid or glass from strong to fragile with increasing density [56–58]
and tetrahedrally bonded systems remain the most promising candidates for studying this
phenomenon experimentally [68, 69]. Furthermore, two or more competing length scales are
built into simple model pair-potentials that are used in calculations to examine the feasibility of
liquid–liquid phase transitions [70–72]. It will therefore be interesting to discover the extent to
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which a competition between ordering on the intermediate and extended length scales provides
a means for rationalizing the density dependent structural transitions that occur in tetrahedral
network glass forming systems. Indeed, large scale molecular dynamics simulations based, for
example, on the polarizable ion model [73] would be useful in order to give insight into basic
issues such as (i) the communality of the principal peak positions in the measured SI J (k) for
network glass forming AX2 materials and (ii) whether this occurrence is a necessary condition
for the formation of a marked FSDP. Furthermore, although the rigid-ion model of equation (9)
gives an excellent starting point for describing the properties of many molten salts, it is not clear
why equations (10)–(12) appear to remain valid for glass forming AX2 systems since three- or
higher-body interactions are usually required in order to provide a realistic representation of
the measured structural and dynamical properties [22, 34]. Molecular dynamics simulations
will enable the generality of equations (10)–(12) to be rigorously tested and will hence give
additional insight into the nature of extended range oscillations.

5. Conclusions

The experimental results for tetrahedral network glass forming AX2 systems show that the
structure is described by two characteristic length scales at distances greater than the nearest-
neighbour. The ordering that extends to the largest distances is not the intermediate range order,
which is associated with the appearance in the measured diffraction patterns of an FSDP, but is
instead a local ordering phenomenon which has a long coherence length. The periodicity and
extent of this ordering on an extended range are set by the position and width, respectively, of
the principal peak in the measured diffraction patterns. Further work is required in order to
unravel the interrelation between the ordering on the intermediate and extended length scales
and its density dependence.
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